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Abstract

In this thesis, we perform a number of progressively more complex experiments that
examine the utility of Hierarchical Temporal Memory (HTM) networks in the task of
visual online motion pattern prediction. First we discuss the requirements for predicting
visual motion patterns with HTM networks and build a framework that fulfills these
requirements. In the first experiment we demonstrate a working system that is capable
of predicting motion patterns for an input space describable by a stateless machine. We
then expand upon this network to create a machine that can predict motion patterns
that requires a stateful machine to predict. Next, we use data from repetitive tasks
in real world camera captures as input and adjust the network to be able to predict
motion in that input space. To examine the progress we compare the three iterations
of the network and find that the last iteration performs best or similarly to the other
two iterations in all experiments. In conclusion, the presented system is capable of
performing varying motion pattern prediction tasks from visual data without requiring
human adjustments. Finally we discuss what future work could be made to expand
upon this system.
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1 Motivation

In Robotics, interaction with humans is a very important component for many prac-
tical applications, to utilize strength and advantages of both human and robotic or
algorithmic workers. Recently, Huber et al. have shown that workflows are absolved
more quickly with active robot assistance than with no assistance [Hub+13] (Figure 1.1).
They showed that any non-adaptive strategy examined (sensor-based trigger, averaged
static times step-specific waiting times) have significantly higher waiting times for both
the human performing the task, as well as the robot assisting with it. However, for
a fully adaptive assistant to act at the times required for optimal waiting times for
both actors, it cannot simply act whenever the human is already done with the task
provided. This was shown by the experiment’s sensor-based trigger assistant that acted
exactly when the human was done with the previous task. In fact, an assistant that was
ready to assist at the exact time the human was ready to receive assistance improved
the workflow speed of the task even better than a perfect always-wait assistant, which
can assist at any time it is required.

Figure 1.1: [Hub+13] Humans absolving a task with robot assistance

That means that an optimal assistant acts in a predictive manner. In highly vision-
based tasks such as assembly of machine parts, accountancy or mechanical reparation,
a motion prediction system has to be implemented that makes predictions based on
visual data to capture all the information that is required for an accurate prediction
based on the situation.

Robotics, however, is not the only application of motion prediction. One other
application is the use in medical fields as a surveillance system of patients. The earlier
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1 Motivation

the system can detect danger by predicting it, the quicker help can arrive for the patients,
as well as offering the capability to collect data specific to the danger [Ugo+13]. Using
a vision-based system especially enables the system to be non-intrusive and applicable
to any patient. Motion prediction can also be used as part of smart anomaly detection
systems in surveillance systems. If collected data can be minimized by stripping away
unwanted or insignificant parts, analysis can be a lot more meaningful as well as easy
for either humans or other systems.

Some approaches, both analytical and those utilizing neural networks, have already
been implemented in an attempt to predict motion. However, those approaches lack two
fundamental components essential for a system dealing with real-world data motion
prediction. The first aspect is inherent temporality. To properly analyze and interpret
temporally complex situations, e.g. with changing speeds or repeating frames, the
system needs a temporal aspect in the algorithm rather than one simply added onto it
after design. The second aspect is online learning. In the real world, situations change
both short-term and long-term, and a good predictive system needs to be able to adjust
to changes on the fly rather than needing to be re-adjusted and parametrized after set
intervals of time to eliminate the need for a manual component to run the system.

Hierarchical Temporal Memory The technology HTM provides both online learning
and inherent temporality and is therefor well-suited for online motion prediction.
While running, a HTM’s cells make constant predictions about the next step and their
synapses to other cells are reinforced or punished according to the Hebbian Rule of
Learning [Heb57]. Due to these constant next-step predictions, further predictions such
as 5-step or 10-step predictions can be extrapolated using a weight matrix.

Another important aspect of HTMs is its usage of Sparse Distributed Representation
(SDR)s for both input and output. SDRs are long binary vectors with a low number of
on-bits, also called the Hamming Weight.

The capacity of an SDR c is lower than that of a conventional dense bit array cd.
Given the vector length n, they can be calculated as c = (n

w) < 2n = cd where n > w > 0.
However, in a trade-off, SDRs have a higher noise tolerance and can thus be considered
stabler under varied inputs [AH16]. Using a threshold overlap for comparison, SDRs
can tolerate extremely high noise values with low false positives in equality. Many
systems using digital sensors, computer vision being one, are subjected to a lot of noise
and can thus benefit from high noise tolerance.

Outline In this thesis we attempt to create a network that is capable of online predic-
tion of visual motion in varying tasks. To create such a system, we first start with a
HTM network designed to solve a very specific visual prediction task. We then progres-
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1 Motivation

sively increase the difficulty of the predictions by introducing more complex aspects
for the input data, and for each iteration adjust the network to produce optimal results
in the new problem space. After each experiment we draw conclusions on the current
state of the network and its capabilities and analyze the predictions made. Numenta
claims that a HTM shares many traits with the way actual human brains compute their
data [HAD10; HA16; HAC17]. It is therefore interesting to examine if predictions made
by HTM networks also share aspects of predictions made by humans. If it is possible
to make comparisons between aspects of the predictions made by the HTM networks
in this thesis and humans, this thesis can hopefully contribute towards research into a
better understanding of human intelligence itself. While it is still possible to perform
complex algorithms on the data prior to encoding to ease the computational load on
the network, to enable the HTM-human comparison, computations performed in this
thesis are passed to the network in relatively raw forms with minimal pre-computation
instead. This allows us to investigate how well the network is capable of performing
all logical tasks required for the prediction itself. A system capable of solving very
different tasks without individual adjustments would be very useful as it would save
time on implementation of complex systems solving specific tasks.
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2 State of the Art

Before we begin with the experiments examining the capabilities of HTM networks
regarding visual prediction of motion patterns, we review other work that has been
done in the same field. We also assess the state of Numenta Platform for Intelligent
Computing (NuPIC), Numenta’s implementation of HTM systems that is used in this
thesis, including important metrics for evaluating the accuracy of predictions.

2.1 Related Work

In robotics, Visual human analysis, or "looking at people" [Gav99], has been one of
the classic and most popular research fields, since it is essential for dynamic human-
robot interaction. It is also a skill humans can do very well while our computers are,
historically, very bad at it.

Motion prediction especially, coming with a broad range of practical applications, has
been a popular study field for a long time. These include parts of systems for human-
robot-interaction [Hub+13; Haw+13], full-body capture, surveillance, user interfaces or
motion analysis [WRB11].

However, new technologies such as the Artificial Neural Network (ANN), algorithms
and altogether different approaches regularly inspire new solutions and progress the
field. We currently differentiate between 3 approach types:

analytical logical approaches to prediction, linear extrapolation
of movement

trained ANN system trained to understand specific patterns

ANN with online learning system with online learning to understand dynamic
patterns

Extremely simple approaches, such as the constant pose predictor, can currently
often outperform other very high-tech complex algorithms in metrics such as 0.4 and 1
second prediction error, where predictions are compared to the actual data. This gives
research some very good baselines to compare state-of-the-art motion prediction to
[MBR17].

These are recent approaches and other related work in the 3 approach types:
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2 State of the Art

Analytical Analytical approaches for motion prediction were the first to be considered
and have, compared to neural networks, a very long history, with a large number of
approaches that so far turn out to be comparatively high-effort. Still, logical under-
standing of image sequences is important and can contribute to solving many related,
albeit usually highly specialized, problems.

Some early approaches to the problem include an approach by Polana et al., where
human action is described statistically by segmenting, normalizing and recognizing
based on low-level features in repetitive motion [PN94], (Haar) wavelet coefficients as
low-level intensity features [Ore+97], or active shape models to track contours [Coo+95].
Recognition of object movement with very distinct shapes (most importantly the hand)
could easily be assessed by simple background subtraction, noise reduction and succinct
shape analysis [Gav99].

Recently, Zhou et al. [Zho+15] have shown a simple baseline that concatenates
features from visual questions’ words and Convolutional Neural Network (CNN)
image features that performs on-par with current purely ANN based approaches.
Jabri et al. [JJM16] present a simple baseline that, while only recognizing whether
complete image-question-answer triplet is correct rather than creating an answer itself,
still achieves state-of-the-art performance compared to more complex approaches,
suggesting a lack of visual grounding concepts for questions and answers. Lehrmann
et al. [LGN13], too, show a simple baseline performing competitively. They implement
a non-parametric bayesian network model as a prior of human pose, which can be used
for pose tracking.

Huber et al. [Hub+10] developed an algorithm modeling human behavior, using a
linear dependency to develop kalman filters in order to predict human behavior in
assembly tasks.

Trained ANN While these analytical approaches are certainly useful for their in-
tended purposes, it is becoming clear that prediction of motion patterns requires some
completely different approach to become tractable. Qualitatively, the predictions made
by these systems make little sense to humans examining them. For that metric, ANNs
have recently shown a lot of promise. Quantitatively, however, ANNs still have a way to
go before reliably outperforming the aforementioned analytical baselines - for example
by .4 and 1 second prediction error metrics.

Fragkiadaki et al. [FLM15] introduced a network with LSTM-3LR (3 layers of
Long Short-Term Memory cells) and ERD (Encoder-Recurrent-Decoder) that is able to
produce plausible long-term human motion predictions. However, it requires specific
tuning by introducing random noise during training, otherwise it quickly accumulates
errors and loses its realistic capabilites.
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2 State of the Art

Jain et al. [Jai+15] proposed a network called structural recurrent neural networks that
introduces expert knowledge into neural network architectures and thus outperforms
previous work both qualitatively and quantitatively. It utilizes semantic knowledge
about the network as input, and dynamically assigns different recurrent neural networks
to similar parts of the data.

Martinez et al. [MBR17] analyzed the previous [Jai+15; FLM15] recent deep recurrent
neural network methods by looking at the architectures, loss functions, and training
procedures. They proposed 3 changes that that resulted in motion prediction that can
compete with other state-of-the-art approaches.

ANN with online learning There have not yet been many approaches to prediction
of motion patterns. However, there has been some work proving the general capability
of HTMs to deal with human poses and motion.

Zhang et al. [Zha+09] have implemented a two-stage approach to detection of people
eating and drinking using a single accelerometer sensor attached to the participants’
wrists. In the first step, the raw accelerometer data is interpreted into euler angles
using the Extended Kalman Filter. A HTM is then used to classify the actions. The
approach achieves the detection task with high accuracy. While non-visual, this shows
that a HTM is a very viable approach to human action observation.

Zhituo et al. [ZHH12] presented a content-based image retrieval system utilizing
multiple HTM classifiers. An image is classified, and from a database a semantically
similar image is selected. Ugolotti et al. [Ugo+13] also developed SDR encoders
specifically for HTM. They presented a four-camera detection and classification of
multiple human activities at the same time, implemented using HTM. The focus is on
rogue behavior detection: When a patient is in danger, it activates an accelerometer
worn by the person to collect a more complete fall data profile for later analysis. This
detection system is meant to lengthen the short battery life on the accelerometers.

To the best of our knowledge, there hasn’t yet been any work examining the predictive
aspect of HTM using a human-oriented visual motion setup as of yet.

2.2 A Brief Introduction to Hierarchical Temporal Memory

In their book, J. Hawkins and S. Blakeslee provide explanations on how certain aspects
of the human brain operate from a state-of-the-art neurological point of view [HB04].
The neocortex in mammals is strongly associated with all conscious thought effort and
many important functions that separate them from other, less intelligently regarded
animals such as birds or reptiles. They thus proposes to start there when looking to
implement intelligence in other systems.
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2 State of the Art

The neocortex has a lot of different regions consisting of many neurons and synapses,
but apart from their contextual place in the brain defined by how they’re connected
to other parts of the body, they all operate roughly by the same rules on the inside,
indicating that there is a basic approach to its function that could be extracted and
implemented in other systems. These regions are interconnected through nerve fibers
in a hierarchy. Input is handled at sensory regions, which feed-forward into other
regions, being associated with progressively more abstract and permanent concepts
[HB04].

Figure 2.1: [HA16] Comparison between Inputs and Outputs of Biological Neurons and
HTM Neurons

Hierarchical Temporal Memory The HTM approach to machine intelligence attempts
to implement the neocortex’s logic into a digital, well-defined algorithmic space. Each
neuron can roughly be considered to be represented by a binary cell: 1 if firing, 0 if
not (Figure 2.1). The initial states are provided by an encoder, which converts data
into binary vectors stored into a sensor region. The vectors are fed into different kinds
of regions, e.g. the Spatial Pooler and the Temporal Memory. Finally, classifiers are
created for some sensor regions for evaluation, which convert the current state into
readable data (Figures 2.2 and 2.3).

A HTM contains two important types of data mapping algorithms, the Spatial Pooler
and the Sequence Memory.

Spatial Pooling The Spatial Pooler groups spatially similar data. In it, each cell
is connected to a number of cells in an individual potential space from an input
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2 State of the Art

Figure 2.2: General Structure in a HTM: A sensor provides data, which is computed
by regions such as the Spatial Pooler or the Temporal Memory, and finally
the data is classified with regards to the Sensor Region to create a readable
output

region. On each step, the cells have a chance to fire if sufficient input bits are activated.
When firing, the cell feed-forwards its value to the output, and adjusts its synapses’
connectivity to other cells according to the Hebbian Rule of Learning: Connections to
cells that previously fired are strengthened, while connections to those that didn’t are
weakened. A firing cell inhibits other nearby cells from firing. An algorithm called
boosting encourages unused cells to fire by counting their duty cycles, which ensures
an efficient use of cells as well as preventing unnecessary overload of cells already in
use, increasing effectiveness in learning different patterns.

Sequence Memory The Temporal Memory (Figure 2.4) groups temporally similar
data. In it, each input-cell (now considered a mini-column) is split into multiple cells
sharing the same distal connections (contextual: same level on the hierarchy), but
differing in proximal connections (input: lower level on the hierarchy). When a column
fires based on proximal connections, it is determined which cell from the column fires
based on the distal connections. When no cell can be determined, the column bursts,
firing all its cells. When firing, the column feed forwards its value to the output, and
adjusts its synapses’ connectivity to other columns according to the Hebbian Rule of
Learning.

In addition to the two data mapping algorithms, there are two other important types
of regions: Sensor regions and classifier regions.

8



2 State of the Art

Figure 2.3: Hierarchy of a HTM: In general, hierarchies in a HTM get smaller and
adjust slower the later they appear in the hierarchy. Each region layer in the
hierarchy is spatially and possibly topologically mapped onto the next in a
feed-forward input. Each layer also receives distal input from itself.

Sensors A sensor region contains input data fed into it by a sensor mapped by an
encoder. The encoder usually has an input of itself, for example a table of scalar values
or a camera input. It converts this sensory data into an SDR.

Like in the neocortex, only a fraction of cells is activated at one time, defining the
concept of the input space approximately and optimally as an SDR.

Classifiers A classifier region is always connected to a sensor region. It therefore
converts an SDR from another region into data resembling that provided by its sensor
region. It can only classify data represented by previous states of the sensor region
(buckets).

Encoders and SDRs To understand the properties and examine the quality of our
encoders used in the experiments, we need to introduce a few metrics for their produced
SDRs.

The sparsity is a good indicator on an SDR’s quality - it should be low and preferably
similar on each step [AH16]. The vector length n and Hamming Weight w can be used
to calculate the sparsity s:

s =
w
n

9



2 State of the Art

Figure 2.4: [HA16] Temporal Memory in a HTM: A Temporal Memory can differentiate
between different sequences sharing Inputs

A difference score can be used to compare different SDRs in the same model. This is
especially useful to compare the accuracy of a prediction against the real data that is
acquired later. We define the difference score d as the euclidean distance between two
vectors v1 and v2:

d = ‖v1 − v2‖

10



3 Setup

There are 3 key components required in the setup of the experiments: The implementa-
tion, its inputs and its outputs. In the following chapter we discuss what is required to
begin with the experiments.

3.1 Software / Implementation

Experiment Framework After initial setup, each experiment runs through a main
control loop that is adjusted to run at a set frame rate. Each step, the current image is
captured, the network run and the prediction extracted, and values shown to the user
for evaluation.

The framework used to interface with NuPIC is the Online Prediction Framework
(OPF). The OPF is the python framework of Numenta created to interface with the
core implementation of NuPIC. For one, it contains important methods making it
simple to interact with NuPIC using python. However, it also contains additional
functionality that is designed to aid the user in common tasks performable with the
NuPIC framework, such as error metrics, prediction interpretation and an easy setup
of networks.

The execution flow is set up as:

# Set Up
read_command_arguments()
register_components()
network = setup_network()
pause(until=key_is_pressed)

n = 0
last_predictions = []

while True:
start_time = current_time()

# Run the step
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3 Setup

image = Camera.capture()
prediction = network.run(n, image)

# Interface to the user
show(blue=image,

green=prediction,
red=last_predictions[n - prediction_steps])

check_key_presses()
last_predictions.append(prediction)

# Prepare for the next step
frame_time = current_time() - start_time
# If any frame computation takes longer than the frame_time,
# we skip ahead to the next planned frame
n += floor(frame_time * frame_time);
sleep(frame_time % frame_time)

}

3.1.1 HTM Network

Figure 3.1: HTM Network Structure for the Experiments

In the network (Figure 3.1), each pixel has one corresponding sensor and one classifier
region. When running a step, the camera input is captured and split up into individual
pixels, each of which is assigned onto its corresponding sensor region’s data source.
These are linked to a Spatial Pooler as feed-forward. Depending on the experiment,
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more regions might be inserted at this point. Finally, the data from the last regions
is feed-forwarded to each classifier region. Each experiment may slightly vary from
this setup. The parameters for each region are discussed in the individual experiments’
sections.

3.2 Network Inputs

For each experiment, a 32x32 size (n = 1024) image sensor in binary color space is
attached to the network’s sensors to compute. The method of image capture differs
from experiment to experiment. In experiments capturing real-time data, 5 frames per
second are captured and computed.

We chose this resolution as lowering it below 32x32 increases the ambiguity of human
visual observations, while increasing it significantly increases rendering times. It should
be possible to run these networks at different resolutions, although some parameters
might have to be adjusted to optimize against the new resolution.

3.3 Network Outputs

For human visual observations, the captured image data is shown in blue and overlayed
with the 5-step predictions computed by the network. The prediction created in the
current frame is shown in green. The prediction created 5 frames earlier, thus predicting
the current frame, is shown in red.

For evaluation, we calculate the distance score between the image matrices of the
current input and the input predicted 5 steps earlier and average it with a number of
other recent distance scores to reduce noise in prediction accuracy. An average distance
of 0 is to be desired.

3.4 Changes to the OPF

Many of the OPF’s methods are restricted to single-value functionality, as opposed to
binary vectors as required in this thesis. For example, it only supports the prediction
and classification of just one value per sensor region. Therefore it is not possible to
predict multiple distinct values in the same region. To be able to create a setup capable
of predicting motion using binary vectors, we need to make some adjustments to the
OPF that are not relevant to the thesis’ data or evaluation, but nonetheless required for
its execution.

These are the required changes:

13



3 Setup

1. The SDR Pass-through encoder only allows prediction of a single value. A custom
Encoder needs to be implemented to allow for prediction of binary vectors.

2. Spatial Pooler regions are restricted to input from a single region. A custom
spatial pooler region needs to be implemented which allows input from multiple
regions.

3. Spatial Pooler regions don’t support topology. Topology support needs to be
implemented for Spatial Pooler regions.

14



4 Experiment 1: Running Bar

The first experiment is designed to test the capability of a HTM to handle topological
input for an online 5-step prediction.

4.1 Setup

In the experiment, a bar runs from left to right, one pixel per step, cycling back to the
start at the end. This means the animation has 32 distinct repeating frames and could
be described by a stateless machine.

To make the experiment topological, frames must have large overlap sets with similar
frames, and small overlap sets with unsimilar frames. To ensure this, the bar is set to a
width of 3 pixels (w = 96). Exact same frames share all input bits, 1-step distant frames

share
2
3

of the input bits, and 2-step distant inputs share
1
3

of the input bits. All other
frames have no overlap. No additional information, such as frame numbers, are given
to the network for the prediction.

4.1.1 Input Details

The input vector is fully digitally computed. No additional sensors are required.
The input vector length n = 1024 and the bar set cardinality w = 96 enable us to

calculate the constant sparsity s:

s =
w
n

= 0.09375

Frames share 2 cells with the frame before, thus also giving us a constant frame to
frame difference score d:

d = ‖v0 − v1‖ = 8

4.1.2 Network Details

In this experiment, each frame has a deterministic following and leading frame, elimi-
nating the need for a temporal component. Therefor, the network consists of only the
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4 Experiment 1: Running Bar

Sensor Regions, a Spatial Pooler, and the Classifier regions. A full list of parameters
can be found in appendix section .1.

The HTM network is set up to be very minimal in order to get it to allocate exactly
one cell per state to allow for a high accuracy prediction. With a highly minimal setup,
we can closely examine which parameters influence what aspects of the prediction.

Spatial Pooler The Spatial Pooler is, in general, defined by very high values. The
boost strength of 100 ensures that all cells are used very efficiently - that is, each
of the 32 cells is responsible for interpreting exactly one bar position. Other values
such as the potential connection ratio of 1 and the global inhibition are required to
enable this. However, it also makes the network highly specialized to this task. When
other parameters such as the cell count are modified, prediction accuracy very quickly
deteriorates. Other parameters are optimized against performance but not required at
specific values.

Classifier It is possible to speed up or slow down learning speed when adjusting the
alpha value of the classifier: A higher value (to its maximum of 1) speeds it up, while a
lower value slows it down.

4.2 Observations

These are our observations made from visual and statistical analysis of the execution of
this experiment:

Observation 1.1 The bar starts at the leftmost position, moving to the right one pixel
each step. At this point, each pixel gets activated once and begins
constantly predicting its activation, ignoring the position of the bar
(Figure 4.2).

Observation 1.2 After the first cycle on the second step, the HTM begins predicting
the bar’s 5-step future position to be 5 pixels to the right of the bar.

Observation 1.3 Every prediction left of the bar is weakened as passes each pixel,
with the notable exception of the first 5 pixels sharing the same
starting point in decrease (Figures 4.3 and 4.4).

Observation 1.4 After each cycle except the first, just before completion, the predic-
tion flashes the whole screen (i.e. weaker prediction) and the bar
loses accuracy, predicting an additional pixel to the right, subtract-
ing the chance from the correctly predicted left pixel (Figure 4.5).
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4 Experiment 1: Running Bar

Figure 4.1: Learning Progression

Different steps of the experiment. Blue: Input Data; Green: 5-Step Prediction

Figure 4.2: The 6th step of
the 1st cycle

Figure 4.3: The 6th step of
the 2nd cycle

Figure 4.4: The 6th step of
the 3rd cycle

On the first step of the next cycle, the prediction instead flashes
dark (i.e. stronger prediction), and the bar loses accuracy, prediction
an additional pixel to the left, subtracting the chance from the cor-
rectly predicted right pixel (Figure 4.6). Afterwards the prediction
continues as usual (Figure 4.7).

Observation 1.5 This effect gets weaker each cycle, exponentially approaching 0
(Figure 4.1).
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4 Experiment 1: Running Bar

Figure 4.5: The on flash Figure 4.6: The off flash
Figure 4.7: Cycle Continua-

tion

After a few cycles (depending on classifier alpha), the bar is constantly predicted in
the right location without any ambiguity. All bar pixels are predicted to be approxi-
mately 1, while all other pixels are predicted to be approximately 0.

4.3 Evaluation

In the first cycle, each pixel that was passed is colored green (Observation 1.1). This
can be explained by the network not having any concept of topology at first, and each
step (save for the overlapping pixels) being a completely new input for it. Observation
1.2 confirms this assumption, since when the network sees inputs it has seen before,
it starts correctly predicting future positions of the bar. As the correlation between
bar and future pixel states is reinforced, prediction strength in other places slowly
decreases. The first and second pixel to the right of the bar share an input overlap
with it, which explains why they share the prediction decrease along with the exact bar
pixels (Observation 1.3).

After each cycle, the screen flashes first bright and then dark. This can be explained
by the fact that the bar begins at this position, and thus the step before the origin shares
its prediction with the beginning of the animation, which introduced the network with
random values. This is confirmed with Observation 1.5, as the effect weakens over time
until it is no longer recognizable.

This experiment shows the capability of a HTM to predict a simple animation with
high accuracy even with a minimal number of cells and segments. For optimal SDRs,
there should be a low and preferably constant Hamming Weight each step [AH16]. In
this experiment, this could be achieved with a constant sparsity of 0.09375.

The performance was acceptable for our purposes - it can be run on a modern home
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4 Experiment 1: Running Bar

computer without any problems at the set 5 frames per second, with the network
computing the predictions online.
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5 Experiment 2: Cyclic Photo Series

With the general capability of handling topological input for an online 5-step prediction
proven, we decide to expand upon other aspects of the input that the system will need
to handle if we want to predict motion with visual camera input.

The key aspect missing in Experiment 1 to show if HTM networks are capable
of handling real-world data is complexity. A setup like experiment 1 can easily be
predicted using a simple automaton based solely on the position of the bar, but real
world data cannot so simply be predicted as it is both spatially and temporally much
more complex.

5.1 Setup

Figure 5.1: [Muy78] Single frame of Ead-
weard Muybridge’s "The Horse
in Motion" Figure 5.2: Single frame encoded as input

data

To examine whether we can realistically introduce real-world data, we must add to
both the spatial and temporal complexity of the input. To add to spatial complexity,
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5 Experiment 2: Cyclic Photo Series

we introduce Eadweard Muybridge’s photos "The Horse in Motion" (Figure 5.1), a
series of pictures showing a horse and its rider in various steps of motion. With the
photos Muybridge showed that the human eye can perceive motion even with a series
of pictures shown in quick succession. As they are actual photos, they most closely
resemble what we want real-world input data to look like and can thus be used to
examine whether the network is capable of handling the complexity. To add to temporal
complexity, we choose a method that forces the network to utilize a temporal aspect for
optimal prediction even without adding noise to the input: The video will be played
forwards and backwards in succession. This ensures that while the input stays spatially
consistent and interpretable by the human eye, it contains repeating frames that prevent
a good prediction based solely on the current input data.

The final input consists of 18 repeating frames and could be described by a state
machine.

5.1.1 Input Details

To encode the image into a binary vector, it is first scaled into size (32x32 pixels). We
then convert the color space to grayscale and finally apply a threshold of value < 150
(Figure 5.2).

The input vector length n = 1024 and each of the images Hamming Weights w allow
us to calculate the minimum sparsity smin, the maximum sparsity smax and the average
sparsity s:

smin = min
w
n

=
214

1024
; smax = max

w
n

=
360

1024

s = (
w
n
) =

242
1024

We can also calculate the difference scores between frames for future comparison.
The minimum difference score dmin, the maximum difference score dmax and the average
difference score d calculate as such:

dmin =
8

1024
; dmax =

14
1024

d =
11

1024

5.1.2 Network Details

In this experiment, the state cannot be purely determined from just the shown image,
in contrast to experiment 1. This means a Temporal Memory is required for accurate
prediction. It is inserted in between the Spatial Pooler and the Classifier regions.
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5 Experiment 2: Cyclic Photo Series

A full list of parameters can be found in appendix section .2.

Spatial Pooler In addition to the Temporal Memory region, a few parameters are
required at specific ranges to allow for accurate prediction of the reversal of the image
sequence. The boost strength must range between about 5 and 20, and the column count
cannot be too low. With differing parameters the network might continuously predict
both leg positions at once, or, at worst, always the last position the legs assumed, which
with a repeating animation is always incorrect. Since the input is now topologically
more complex than in the previous experiment, we change the Spatial Pooler to reflect
this aspect. It is switched to a topological setup by restricting each cell in its available
input space.

Temporal Memory The values in the Temporal Memory are mostly not required at
specific values. Each of the values can contribute to a quicker learning speed when
set to an optimal value. Most significantly, the segments per cell must be above 2 and
the max seq length must be above about 20 to ensure good results. An optimization
algorithm suggests a largely independent optimization per variable is possible.

5.2 Observations

These are our observations made from visual and statistical analysis of the execution of
this experiment:

Observation 2.1 At the very beginning, difference scores for prediction and actual
state have a very large range (Figure 5.3.

Observation 2.2 The visual prediction roughly equates to an accumulation of previ-
ously seen inputs.

Observation 2.3 After a full cycle, the difference scores begin to exponentially im-
prove and approach 0.

Observation 2.4 As the difference scores improve, the difference score noise does as
well.

Observation 2.5 At first, one can observe a second pair of legs moving opposite the
first. It is corrected through more cycles (Figures 5.4 through 5.6).
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5 Experiment 2: Cyclic Photo Series

Figure 5.3: Learning Progression

Different steps of the experiment. Blue: Input Data; Red: Prediction 5 steps earlier

Figure 5.4: Step 5 of the Ex-
periment

Figure 5.5: Step 50 of the Ex-
periment

Figure 5.6: Step 500 of the
Experiment

5.3 Evaluation

At the very beginning, the prediction is roughly equal to the states that the network has
seen previously (Observation 2.1). This is to be expected, as seen before in Observation
1.1, because the network can confidently predict pixels that stay the same value over
time (Observation 2.2) - i.e. have high overlaps in between all frames and are thus
regarded as semantically similar to each other. However, the pixels that do change
cause noise in the prediction until the first cycle is complete. After the first cycle, noise

23



5 Experiment 2: Cyclic Photo Series

and prediction accuracy increase (Observation 2.3). This can also be observed visually
by the horse’s legs appearing blurry in Figure 5.5.

Observation 2.5 is significant because it highlights the importance of a temporal
aspect in the network. Especially with differing values in boost strength, Spatial Pooler
resolution or Temporal Memory column count, the network can quickly lose its ability
to predict the inversion of the animation. A good set of parameters however can give
the network the ability to correctly predict even inversions of an animation.

After about 22 cycles / 396 steps there is little noise left and the network has extremely
accurate predictions for the animation (Figure 5.3). This suggests that the network is
capable of handling more complex animations than the one used in Experiment 1, both
spatially and temporally.

The experiment required better tweaking of parameters compared to Experiment 1
to reach good accuracy after a minimal amount of time. However, apart from a few
parameters integral to predicting the animation reversal, most merely improved upon
the speed of learning the pattern. In terms of performance, it is possible to compute
this experiment with 5 frames per second on a modern home computer.
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6 Experiment 3: Real World Data

With the complex inputs both spatially and temporally proven to work with our
setup, we decide to expand upon the final missing aspect of motion prediction: Input
variability. This is arguably the most important and most difficult aspect since without
it, simpler prediction algorithms would suffice to predict small input sets.

6.1 Setup

The experiment is split into repeating iterations of the same movement. On each
iteration, an arm is moved across the frame from right to left, taking a total of about 5
seconds to move through it. This action is performed in repetitive fashion to ensure
an easily predictable input, though it is not machine guided - no timer, guideline
or reference is used to ensure the statisticity of the action. The captured data is
thus completely subjected to human motion and not describable by a state machine.
The input contains no repeating iterations, though repeating frames are theoretically
possible with a low chance.

6.1.1 Camera Details

To capture image data, a camera mounted to a stand and pointed down towards a
white table with a distance of 58cm (Figure 6.1 and 6.2).

6.1.2 Encoder Details

To encode each image into a binary vector, we want to make sure the algorithm does as
little pre-interpretation on the image to avoid evaluating two algorithms at once (the
encoding algorithm as well as the network). At the same time, though, it needs to be
evaluatable. The algorithm needs to produce very similar results on every run, not
influenced by different lighting or backgrounds, so that the input data always reflects
the actions performed with as little alteration as possible. To ensure this, we use a
mask derived from a threshold on a background subtraction. We capture the view of
the camera (Figure 6.3), blur the image to reduce noise (Figure 6.4), subtract it from
a previously determined background reference (Figure 6.5) and threshold the colors
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6 Experiment 3: Real World Data

Figure 6.1: Experiment Setup: The Camera
is mounted 5cm above a white
table and directed towards it Figure 6.2: Abstraction of the captured im-

age: An arm is moved through
the frame

(Figure 6.6), and finally scale and combine the color channels to get the final encoded
image (Figure 6.7).

Figure 6.3: The raw image
captured by the
camera

Figure 6.4: 32x32 Blur on
the captured im-
age

Figure 6.5: Blurred Ref-
erence Back-
ground

Since the difference between the background and the current image is used without
pre-interpretation as input, sparsity and difference scores vary among frames. However,
since there is only one object involved in the experiment, the sparsity varies only
between the mean sparsity (arm fully in frame) and 0 (arm out of frame). The difference
score varies depending on the arm speed, the value of which denotes semantic data in
itself (arm position change between frames) and is thus acceptable as well. Since we
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6 Experiment 3: Real World Data

Figure 6.6: 0.01 Threshold Difference of
the captured image and back-
ground

Figure 6.7: Encoded Data for the Network

only want to predict the position of the arm, it is acceptable to have a low sparsity and
predict few patterns when it is not in frame [AH16]. In some frames, the image has a
Hamming Weight of 0; in others, the arm and arm are in full frame, taking up about
10% of the total image size in pixels. Since the speed varies only slightly and no frames
are skipped, however, the difference scores stay roughly the same.

6.1.3 Network Details

In this experiment, two components are added to the previous network setup: An
untopological Spatial Pooler is inserted between the topological Spatial Pooler and
the Temporal Memory, which additionally receives feed forward input from two new
sensor regions that encode the grey value center x and y of the raw input using a scalar
encoder. As the arm is the only object in the encoded camera input, the center values
represent its position and we thus predict that it will help the network understand the
action faster if it receives the position as well. The center is encoded using a w = 31
and a radius = 5.

Another region that we introduce in this experiment is the edge filtered sensory
region. It receives the same input as the sensory pixel region, but applies an edge filter
to it, blurs and finally thresholds the result again. This results in thicker edges, so
that edges at similar positions share bits and thus semantic meaning for the network.
However, feeding this either as the sole input for the network, or as an additional

27



6 Experiment 3: Real World Data

feed-forward in the same way as the center sensory regions, significantly worsened the
prediction accuracy with different permutations of parameters. We thus do not include
the edge filtered sensory region in the final network.

Most of the parameters contribute to quicker and more stable learning speeds, and
a lot of them have minimal effects. With a growing number of parameters, this is to
be expected as the network always has other data sources to base its predictions on.
Since the actions in this experiment never change, except for minor variations in each
iteration, the permanence decrease values are low compared to the increase values.
This is the case in all of the computation regions. A full list of parameters can be found
in appendix section .3.

Joining Spatial Pooler To encourage cells in this Spatial Pooler to make use of both
raw image- and center data at once, the joining spatial pooler is untopological.

Temporal Memory To ensure the network can learn a full iteration of movement and
wait adequately long for the arm to come into frame after the previous one, relatively
large numbers in sequence length, infer backtracking length and learn backtracking
length are required. Though the network can make acceptable predictions with small
numbers in infer and learning backtracking count, high values are required for very
good predictions. Since the network is required to adjust its predictions based on
the speed of the arm in frame, we set the max number of synapses to a high amount
compared to the column count.

6.2 Observations

These are our observations made from visual and statistical analysis of the execution of
this experiment:

Observation 3.1 At first, the prediction roughly equates to an accumulation of previ-
ously seen inputs. This improves after the first iteration (Figures 6.9
through 6.11).

Observation 3.2 After almost a full iteration, a predicted arm can be observed on the
right of the image.

Observation 3.3 This prediction isn’t on the far right but instead a little bit indented
to the left.
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6 Experiment 3: Real World Data

Figure 6.8: Learning Progression

Different steps of the experiment. Blue: Input Data; Red: Prediction 5 steps earlier

Figure 6.9: Iteration 2 of the
Experiment

Figure 6.10: Iteration 4 of
the Experiment

Figure 6.11: Iteration 8 of
the Experiment

Observation 3.4 If pixels that where never activated before activate in an input, they
behave roughly similar to Observation 3.1, though adapts more
quickly.

Observation 3.5 At first, difference scores never reach near-zero values, but after a
few iterations they regularly do.

Observation 3.6 The difference scores never approach 0, as opposed to the previous
experiments (Figure 6.8). They also maintain a lot of noise.
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6 Experiment 3: Real World Data

Observation 3.7 The predicted arm is on average a little bit larger than the actual
arm and blurs towards the outward (Figure 6.10).

6.3 Evaluation

Observation 3.1 is a repeated observation from Observations 1.1 and 2.2: After initial
activation, the network seems to continue to predict the activation of most pixels until
they are activated a second time.

The new network setup greatly improves learning speed and prediction accuracy as
opposed to a single Spatial Pooler linked to a Temporal Memory. The center sensory
regions help speed up learning speed and accuracy by a significant amount, though
they are not required for good prediction results. The edge filters significantly worsens
the result with different permutations of hierarchies and parameters and were thus
deactivated.

Observation 3.2 highlights the influence of the temporal memory in the network.
Since any given iteration takes roughly the same time, the network has an idea of when
to predict the arm coming into frame. Since the prediction is set to 5 steps / 1 second
into the future, the shown prediction can never be on the far right (Observation 3.3),
since the arm will have moved to the left already after the 5 steps following the initial
step with the arm coming into frame has passed.

Since the network has no initial sense of topology, when a sensory region activates
for the first time, it behaves as if the animation had just started, regardless of whether
previous iterations had already passed. Other cells are at later points already committed
to prediction specific positions of the arm, however, which leads to quicker learning for
the newly activated pixels according to the Hebbian rule of learning (Observation 3.4).

A prediction approaching perfect distance scores of 0 are to be preferred, of course,
but it is to be expected that this is unrealistic as a lot of complex factors are involved in
human motion. To reach a maximum prediction accuracy with minimal information,
the network must make trade-offs with outwards pixels because of varying motion
speed by the arm. This approach shows in Observations 3.6 and 3.7. However, the
network also learns where to make trade-offs and where it can confidently predict
specific values. After a few iterations it learns that there is always a minimum pause
when the arm disappears from the screen - which is caused by the arm moving back to
the other side of the camera. This optimization is shown by Observation 3.5, where the
network slowly begins to confidently predict all pixels to be inactive.

After about 20 iterations / 1000 steps, the network has already reached stable average
distance scores of about 5 and continues to further improve after more iterations. It
seems to converge to an average distance of about 3.5.
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6 Experiment 3: Real World Data

The results of this experiment show that the setup utilized in this experiment is
suitable for real-world data and can manage realistic predictions within a small number
of iterations. The parameters did not have to be tweaked to the same level of exactness of
experiment 2, possibly because the temporal component was more similar to experiment
1 than experiment 2 in complexity. However, the performance went further down from
experiment 2, disabling the capability to run this experiment in real-time (a frame took
approximately 300 milliseconds to compute on a modern home computer).
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7 Network Capability: An Examination

The evaluation of experiment 3 shows that the network is now capable of handling
real-world data. We will draw a comparison between the different iterations of the
network, and test the last iterations against different kind of tasks to examine the extent
of its capability.

7.1 Comparison of the Networks

Compared performance of the 3 developed Networks over the different experiments

Figure 7.1: Experiment 1 Figure 7.2: Experiment 2 Figure 7.3: Experiment 3

To investigate a possible improvement in prediction accuracy over the previous
iterations of the network, we compare them to each other using the distance score in all
3 experiment setups.

The comparison between all 3 networks in different tasks shows that with each
change over the former experiment, the setup gets better at handling different tasks
with greater speed (Figures 7.1 through 7.3). Since the input for experiment 1 is very
similar to the input in experiment 3, its network handles that input data surprisingly
well. However, it doesn’t doesn’t allow for a wider range of tasks, as its performance
in experiment 2 shows: Its average distance scores never improves beyond a general
average of 5.5. The second network handles the first two experiments decently but
doesn’t make strong improvements with the data from experiment 3. The third network
can handle all 3 tasks with relative ease, and even comparable performance to the
networks specifically designed to accomplish those tasks.
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7 Network Capability: An Examination

7.2 Additional Experiments

To examine the capability range of the third network, we will also perform additional
experiments and test its learning progression within that input space.

7.2.1 Circular Motion

Figure 7.4: Setup of the Circular Motion
Experiment Figure 7.5: Learning Progression of the Cir-

cular Motion Experiment

This experiment tests if the network is capable of predicting a different task to
Experiment 3. In this Experiment, the arm is not moved from right to left; rather,
it stays in the center of the frame and does a circular motion (Figure 7.4). Like in
experiment 3, this motion is not machine-guided and thus completely subject to human
motion.

Evaluation In the trend (Figure 7.5) there is a significant improvement over time as
the network learns the pattern of the moving hand action. However, since the center
of the circulation was not marked, the rotation center drifted over time which results
in worse prediction accuracy from the network. Still, both noise and average value of
the distance score improve over time and suggest the network is decently capable of
predicting this action without any additional tuning.

7.2.2 Varying Speeds

To test how well the experiment adjusts to even larger differences in motion, we
introduce a randomized factor into the setup of Experiment 3. The arm also moves
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7 Network Capability: An Examination

Figure 7.6: Setup of the Varying Speeds Ex-
periment Figure 7.7: Learning Progression of the

Varying Speeds Experiment

across the frame from right to left, but rather than trying to keep a roughly constant
speed, it is moved with highly varying speeds (Figure 7.6). Thus, iteration length ranges
from about 1 to 10 seconds. Overlap Scores also strongly differ between iterations in
this experiment.

Evaluation While not immediately visible when observing just the raw distance score
data, the trend and the 30-step average show a clear improvement overtime in this
experiment (Figure 7.7). It can therefor be regarded as being an acceptable prediction
system of this experiment. It is however notable that the network requires a lot more
time and has a lot more noise in the accuracy of its predictions compared to the
results of Experiment 3. This can be explained by the additional randomized variable
introduced to make prediction harder.

7.2.3 Two Hands

In this experiment we test how well the network deals with two hands in the frame at
the same time, and how well it deals with a reversal of motion similar to Experiment 2.
The hands are first moved into the frame and then continuously move back and forth
while staying roughly parallel to each other (Figure 7.8). Like in the other experiments,
no machine guidance was used and a high variance in actual motion is to be expected.

Evaluation Even after a lot of iterations, no clear trend is visible in the prediction of
this motion (Figure 7.9). This suggests that the network is well-suited for predicting a
repetitive real-world task with a reversal of motion.
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7 Network Capability: An Examination

Figure 7.8: Setup of the Two Hands Exper-
iment Figure 7.9: Learning Progression of the

Two Hands Experiment

7.2.4 Basic Assembly

Figure 7.10: Setup of the Basic Assembly
Experiment Figure 7.11: Learning Progression of the

Basic Assembly Experiment

This experiment introduces a complex task for the machine to predict. On each
iteration an object is assembled (Figure 7.10) and then disassembled. The assembly
consists of 3 distinctly shaped objects lying in a set order on one side with a random
orientation. The pieces are then grabbed and moved to the other side of the frame,
where they are assembled in a set order and orientation (though with varying positions
of the final assembled object). Finally, the object is disassembled and the parts moved
to the other side of the frame again.
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7 Network Capability: An Examination

Evaluation For this experiment, the distance scores of prediction are a lot higher than
in all previous experiments (Figure 7.11). However, the data shows clear peaks and
caves in performance, which suggests that the network picks up on certain parts of
the assembly which it can predict really well, while it is a lot worse at other parts.
The trend shows a very slight downwards slope, but it is likely that it will not be
able to improve much beyond its current state. This suggests that the network is not
well-suited for the prediction of complex tasks such as assembly of machine parts.
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8 Conclusion

We presented a system using a HTM network that was capable of predicting a sim-
ple, repetitive animation that would be predictable by a stateless machine. We then
expanded upon the system to make it capable of predicting a cyclic animation that
requires a stateful machine to predict. We extended the final system to enable it to
predict a repetitive task from real-world data.

The results from Experiment 3 as well as those from the additional experiments
show that the system presented in this thesis is capable of predicting a number of
different tasks within the problem space of real-world visual human motion prediction.
These tasks include running a hand over the screen at semi-constant or varying speeds,
and rotating the hand inside the frame without a set pivot point. It surpasses simple
baselines such as the 1-second constant pose predictor [MBR17] in these tasks and
confirms Zhang et al.’s [Zha+09] and Ugolotti et al.’s [Ugo+13] findings that systems
using HTMs are viable approaches to human action observation. The system does not
require specific adjustments for each task, expert knowledge or complex algorithms
modifying the input data for reasonable predictions. This makes it well-suited for use
in this problem space as the sole major logical component of a prediction system.

8.1 Future Work

The concept of a HTM is adjusting with future discoveries in neurological science, and
its parameters, algorithms and general structure are subject to change in the future.
Numenta’s implementation NuPIC might change along with it, and it might also not
stay the only implementation of this concept. With future implementations, it is possible
to review the problems presented in this thesis to evaluate whether distance scores can
be minimized further and whether similar systems can produce better predictions.

It is likewise plausible that the performance of these implementations improves,
allowing for larger-scale vision based data such as bigger resolutions, better frame-rates,
or a larger color space. Predictions made by this network might improve with more
data available to it. It might also be possible to test longer-term predictions when
short-term predictions such as 1 second predictions are optimized.

Finally, there are a lot of possible configurations of the HTM hierarchy, including the
introduction of additional sensors that provide pre-interpreted data based on analytic
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8 Conclusion

algorithms or expert knowledge. This kind of data might improve the learning speeds
of the network and even allow it to solve larger problem spaces.
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.1 Experiment 1 - Network Parameter Details

Table .1: Spatial Pooler
boostStrength 100
columnDimensions [sensor_cam.width]
globalInhibition 1
numActiveColumnsPerInhArea 1
inputDimensions [sensor_cam.width * sensor_cam.height]
potentialPct 1.
potentialRadius sensor_cam.width * sensor_cam.height
synPermActiveInc 0.5
synPermInactiveDec 0.5
synPermConnected 0.1
wrapAround 1

seed 50
spatialImp cpp

Table .2: Classifier
alpha 0.5
maxCategoryCount 2
steps 5
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.2 Experiment 2 - Network Parameter Details

Table .3: Spatial Pooler
boostStrength 10
columnDimensions [20, 20]
globalInhibition 0
numActiveColumnsPerInhArea -1
localAreaDensity .15
inputDimensions [sensor_cam.width, sensor_cam.height]
potentialPct .25
potentialRadius 4
synPermActiveInc 0.1
synPermInactiveDec .1
synPermConnected 0.1
wrapAround 0

seed 50
spatialImp cpp
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Table .4: Temporal Memory
activationThreshold 20
minThreshold 3
cellsPerColumn 6
columnCount 400
globalDecay 0.0
initialPerm 1
connectedPerm .1
maxAge 0
maxSegmentsPerCell 4
maxSynapsesPerSegment 250
newSynapseCount 20
outputType normal
pamLength 6
permanenceDec 0.001
permanenceInc 0.2
predictedSegmentDecrement 0.0
maxInfBacktrack 10
maxLrnBacktrack 10
maxSeqLength 60

seed 50
inputWidth 1
temporalImp cpp

Table .5: Classifier
alpha 0.01
maxCategoryCount 2
steps 5
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.3 Experiment 3 - Network Parameter Details

Table .6: Center Sensors
minval 0
maxval sensor_cam.width / sensor_cam.height
w 31
radius 5

Table .7: Image Spatial Pooler
boostStrength .001
columnDimensions [20, 20]
globalInhibition 0
numActiveColumnsPerInhArea -1
localAreaDensity .15
inputDimensions [sensor_cam.width, sensor_cam.height]
potentialPct .25
potentialRadius 3
synPermActiveInc 0.3
synPermInactiveDec .01
synPermConnected 0.1
wrapAround 0

seed 50
spatialImp cpp
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Table .8: Joining Spatial Pooler
boostStrength 5
columnDimensions [256]
globalInhibition 1
numActiveColumnsPerInhArea -1
localAreaDensity .12
inputDimensions [230 + 230 + 400]
potentialPct .25
potentialRadius 20
synPermActiveInc 0.1
synPermInactiveDec .01
synPermConnected 0.1
wrapAround 0

seed 50
spatialImp cpp
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Table .9: Temporal Memory
activationThreshold 20
minThreshold 3
cellsPerColumn 5
columnCount 256
globalDecay 0.0
initialPerm 1
connectedPerm .1
maxAge 0
maxSegmentsPerCell 4
maxSynapsesPerSegment 500
newSynapseCount 10
outputType normal
pamLength 6
permanenceDec 0.001
permanenceInc 0.1
predictedSegmentDecrement 0.0
maxInfBacktrack 120
maxLrnBacktrack 120
maxSeqLength 60

seed 50
inputWidth 1
temporalImp cpp

Table .10: Classifier
alpha 0.01
maxCategoryCount 2
steps 5

45



Glossary

ANN Artificial Neural Network. 4, 5, Glossary: Artificial Neural Network

Artificial Neural Network is any neural network designed and implement by humans..
1

CNN Convolutional Neural Network. 5, Glossary: Convolutional Neural Network

Convolutional Neural Network is a type of artificial neural network.. 1

Hierarchical Temporal Memory is a biologically oriented type of neural network.. 1

HTM Hierarchical Temporal Memory. iv, 2–4, 6–10, 12, 15, 16, 18, 20, 37, 46, 47,
Glossary: Hierarchical Temporal Memory

Numenta Platform for Intelligent Computing is an implementation of a HTM.. 1

NuPIC Numenta Platform for Intelligent Computing. 4, 11, 37, Glossary: Numenta
Platform for Intelligent Computing

OPF the Online Prediction Framework. 11, 13, Glossary: The Online Prediction Frame-
work

SDR Sparse Distributed Representation. 2, 6, 9, 10, 14, 18, Glossary: Sparse Distributed
Representation

Sparse Distributed Representation is a representation of data characterised by a low
ratio of on-bits.. 1

The Online Prediction Framework is a python interface for NuPIC.. 1
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